skip to main content


Search for: All records

Creators/Authors contains: "Brock, Debra A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kirienko, N (Ed.)
    Abstract Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5′ half of grlG—the region encoding the signal peptide and the extracellular binding domain—were significantly associated with the loss of fruiting body formation; the association was not significant in the 3′ half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5′ half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something—likely cheating—during the multicellular stage. 
    more » « less
    Free, publicly-accessible full text available October 13, 2024
  2. The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia’s potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia’s symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes. 
    more » « less
    Free, publicly-accessible full text available July 19, 2024
  3. Some endosymbionts living within a host must modulate their hosts’ immune systems in order to infect and persist. We studied the effect of a bacterial endosymbiont on a facultatively multicellular social amoeba host. Aggregates of the amoeba Dictyostelium discoideum contain a subpopulation of sentinel cells that function akin to the immune systems of more conventional multicellular organisms. Sentinel cells sequester and discard toxins from D. discoideum aggregates and may play a central role in defence against pathogens. We measured the number and functionality of sentinel cells in aggregates of D. discoideum infected by bacterial endosymbionts in the genus Paraburkholderia. Infected D. discoideum produced fewer and less functional sentinel cells, suggesting that Paraburkholderia may interfere with its host’s immune system. Despite impaired sentinel cells, however, infected D. discoideum were less sensitive to ethidium bromide toxicity, suggesting that Paraburkholderia may also have a protective effect on its host. By contrast, D. discoideum infected by Paraburkholderia did not show differences in their sensitivity to two non-symbiotic pathogens. Our results expand previous work on yet another aspect of the complicated relationship between D. discoideum and Paraburkholderia, which has considerable potential as a model for the study of symbiosis. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. null (Ed.)
  5. Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum . The new species P. agricolaris sp. nov. , P. hayleyella sp. nov. , and P. bonniea sp. nov . are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum . We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship . All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses. 
    more » « less
  6. A species can benefit or be hurt by other species. For example, honeybees and flowering plants help each other to flourish, while lions and gazelles behave in ways that decrease each other’s populations. Understanding these relationships is important for controlling pests and diseases. Sometimes it is easiest to study such interactions by looking at simple ones that happen on a small scale. Amoebas are common soil organisms that have the same basic organization as human cells. They are much larger and more complex than the bacteria that also live in the soil. How exactly the amoebas and bacteria interact in the soil is an important question, particularly as some of the bacteria can also live inside amoebas. Does this intimate relationship help or harm the amoeba? Shu, Brock, Geist et al. studied the relationship between a widely studied species of social amoeba and two species of bacteria that can live inside it. Some of the amoebas naturally contained one of the bacteria species, and others were infected with the bacteria in experiments. Throughout the entire life cycle of the amoebas, the bacteria lived inside them. During one part of the life cycle, amoebas form so-called fruiting bodies, which release spores that can develop into new amoebas. Shu et al. found that both types of bacteria alter the structure of the fruiting bodies in ways that reduce how well the spores disperse. One of the bacteria species, called Burkholderia hayleyella, harmed the amoebas a lot. It caused most harm to amoebas that do not naturally host the bacteria. This indicates that the amoebas that do host this species may have evolved to avoid its worst effects. The amoebas have many similarities to the white blood cells that clear bacteria from the human body. Certain bacteria can get inside white blood cells, causing diseases such as tuberculosis. Understanding how bacteria harm amoebas might be useful for understanding such diseases, and developing treatments for them. Though the bacteria Shu et al. studied are not toxic to humans, they are closely related to bacteria that are harmful. It is therefore possible that some bacteria that infect humans first evolve to infect amoebas. 
    more » « less
  7. Investigating microbial interactions from an ecological perspective is a particularly fruitful approach to unveil both new chemistry and bioactivity. Microbial predator–prey interactions in particular rely on natural products as signal or defense molecules. In this context, we identified a grazing-resistant Pseudomonas strain, isolated from the bacterivorous amoeba Dictyostelium discoideum. Genome analysis of this bacterium revealed the presence of two biosynthetic gene clusters that were found adjacent to each other on a contiguous stretch of the bacterial genome. Although one cluster codes for the polyketide synthase producing the known antibiotic mupirocin, the other cluster encodes a nonribosomal peptide synthetase leading to the unreported cyclic lipopeptide jessenipeptin. We describe its complete structure elucidation, as well as its synergistic activity against methicillin-resistant Staphylococcus aureus , when in combination with mupirocin. Both biosynthetic gene clusters are regulated by quorum-sensing systems, with 3-oxo-decanoyl homoserine lactone (3-oxo-C10-AHL) and hexanoyl homoserine lactone (C6-AHL) being the respective signal molecules. This study highlights the regulation, richness, and complex interplay of bacterial natural products that emerge in the context of microbial competition. 
    more » « less